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Abstract - Underwater acoustics is the study of the propagation of sound in water and the
interaction of the acoustic (sound) waves with the water, its contents, and its boundaries. While
sound moves at a much faster speed in the water than in air, the distance that sound waves
travel is primarily dependent upon the sound speed profile of the ocean. The need to model and
study acoustic propagation in the sea has always been in demand. Practical issues with
forecasting sonar performance in support of anti-submarine warfare (ASW) operations during
World War II led to the earliest attempts at modeling sound propagation in the sea. The
theoretical basis underlying all mathematical models of acoustic propagation is the wave
equation. The wave equation itself is derived from the more fundamental equations of state,
continuity, and motion. As a mathematical expression of acoustic physical properties, a
numerical acoustic field can describe the physical laws of ocean acoustic propagation with
simple and clear numerical solutions. Commonly used computational ocean acoustic theories
include the parabolic equation (PE) model, normal modes, the wavenumber integration method
and the ray model. This paper aims at studying all these models briefly and focusing on the PE
models as they are considered to be fast and flexible for range-dependent acoustic propagation
problems like those of the Indian Ocean Region (IOR). Additionally, it compares the three
models of PE equations and states that the accuracy, speed, and efficiency of any model
depend on the sound speed profiles. The findings include that there has not been a single
model that guarantees to work efficiently in all places and situations. Rather, different models
work perfectly with different scenarios, making them compatible with different profiles. The
PE-RAM model, although the most widely used model, is shown to work poorly when it comes
to smooth sound profiles. On the other hand, it proved to be the fastest for rough profiles.
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Introduction- The ocean contains an abundance of energy, minerals, and biological
resources. The urgent requirements of marine research and development have posed new
challenges for the detection, identification, positioning, and communication of underwater
targets. At present, sound waves are the main means for remotely transmitting information
underwater; therefore, it is of great practical significance to thoroughly study and understand the
laws of underwater acoustic propagation. Commonly used computational ocean acoustic
theories include the parabolic equation (PE) model, normal modes, the wavenumber integration
method, and the ray model (Tu et al., 2020).

Development of the wave propagation models: Formulations of acoustic
propagation models (APMs) generally begin with the three-dimensional, time-dependent wave
equation. For most applications, a simplified linear, hyperbolic, second-order, time-dependent
partial differential equation is used:

where∇2 is the Laplacian operator [= (∂2/∂x2) + (∂2/∂y2) + (∂2/∂z2)], Φ is the potential function,
c is the speed of sound, and t is the time. Subsequent simplifications incorporate a harmonic
(single-frequency, continuous wave) solution in order to obtain the time-independent Helmholtz
equation.Specifically, a harmonic solution is assumed for the potential function Φ:

Φ = φ e−iωt
where ϕ is the time-independent potential function, ω is the source frequency (2πf), and f is the

acoustic frequency. Then the wave equation 4.1 reduces to the Helmholtz equation
where k = ω/c = 2π/λ is the wavenumber and λ is the wavelength. In cylindrical
coordinates, Equation 4.3a becomes



Equation 4.3a is referred to as the time-independent (or frequency-domain) wave equation.
Equation 4.3b, in cylindrical coordinates, is commonly referred to as the elliptic-reduced wave
equation. Various theoretical approaches are applicable to the Helmholtz equation. The
approach used depends upon the specific geometrical assumptions made for the environment
and the type of solution chosen for ϕ.

There are 5 canonical solutions/modeling techniques which are namely - ray theory, normal
mode, multipath expansion, fast field, and parabolic equation (PE) techniques. Within these five
categories, a further subdivision can be made according to range independent and -dependent
models. Range independence means that the model assumes a horizontally stratified ocean in
which properties vary only as a function of depth. Range dependence indicates that some
properties of the ocean medium are allowed to vary as a function of range (r) and azimuth (θ)
from the receiver, in addition to depth (z) dependence. Such range-varying properties commonly
include sound speed and bathymetry, although other parameters such as sea state, absorption
and bottom composition may also vary (Etter, 2018). The figure above clearly categorizes these
models and explain the function that each one of them uses.

Applications



a. Ray Theory Model: Ray-theoretical models calculate wave equation on the
basis of ray tracing. It is used to to predict noise emissions from isolated wind
turbines and wind parks(Prospathopoulos & Voutsinas, 2007), modeling and
imaging of seismic data (Iversen et al., n.d.)[4], modeling of the ultra-wideband
on body radio channel(UWB On-body Radio Channel Modeling Using Ray
Theory and Subband FDTD Method, n.d.). A ray theory approach to investigate
the influence of flow velocity profiles on transit times in ultrasonic flow meters for
gas and liquid[6]. This modeI is developed based on the geometrical acoustics
approximation. The geometrical acoustics approximation is a condition in which
the fractional change in the sound-speed gradient over a wavelength is small
compared to the gradient c/λ, where c is the speed of sound and λ is the acoustic
wavelength. Specifically,

In other words, the sound speed must not change much over one
wavelength.The geometrical acoustics approximation effectively limits the
ray-theoretical approach to the high-frequency domain. With appropriate
frequency-dependent (diffraction) corrections and proper evaluation of caustics,
ray theory can be extended to frequencies lower than those normally associated
with the geometrical acoustics approximation. Under these conditions, the
approach is commonly termed “ray theory with corrections.” Another drawback is
propagation models based on ray-tracing techniques generally treat bottom
reflection as specular and reduce the intensity through application of a bottom
reflection loss. However, acoustic energy can be transmitted into the bottom
where it is subsequently refracted, attenuated, and even transmitted back into the
water column at some distance down range(Etter, 2018).

b. Normal Model: This models has varied applications like expansion to AE Waves
in Finite Plates(Gorman & Prosser, 2013), Dynamics of Gravity Oscillations in a
Shallow Water Model, solving Differential Equations with Neural
Networks(Solving Differential Equations With Neural Networks: Application to the
Normal-mode Equation of Sound Field Under the Condition of Ideal Shallow
Water Waveguide, n.d.).To solve the equation using this particular model,
cylindrical symmetry is assumed in a stratified medium (i.e., the environment
changes as a function of depth only). One advantage of normal-mode solutions
over ray-theoretical methods is that TL can easily be calculated for any given
combination of frequency and source depth (z0) at all receiver depths (z) and
ranges (r). Ray models, on the other hand, must be executed sequentially for
each change in source or receiver depth. A disadvantage associated with
normal-mode solutions is the degree of information required concerning the
structure of the sea floor. In order to execute effectively, this type of model
generally requires knowledge of the density as well as the shear and



compressional sound speeds within the various sediment layers. Unlike
ray-theoretical solutions, wave-theoretical solutions inherently treat dispersion
effects. Dispersion is the condition in which the phase velocity is a function of the
acoustic frequency If present, dispersion effects are most noticeable at low
frequencies. Normal mode approaches tend to be limited to acoustic frequencies
below 500 Hz due to computational considerations.

c. Multipath Expansion: Multipath expansion techniques expand the acoustic field
integral representation of the wave equation in terms of an infinite set of integrals,
each of which is associated with a particular ray-path family. This method is
sometimes referred to as the “WKB method” since a generalized WKB
(Wentzel–Kramers–Brillouin) approximation is used to solve the depth-dependent
equation derived from the normal mode solution. Each normal mode can then be
associated with corresponding rays. Unlike ray-theoretical solutions, however the
WKB method normally accounts for first-order diffraction effects and caustics.
This approach is particularly applicable to the modeling of acoustic propagation in
deep water at intermediate and high frequencies. Multipath expansion models
thus have certain characteristics in common with ray models.(Etter, 2018).

d. Fast Field: It is used in underwater acoustics and seismology. In underwater
acoustics, fast-field theory is also referred to as “wavenumber integration.” In
seismology, this approach is commonly referred to as the “reflectivity method” or
“discrete-wavenumber method.” Historically, models based on fast-field theory
did not allow for environmental range dependence(Etter, 2018).

e. Parabolic Equation: The parabolic equation method is widely used in ocean
acoustics and seismology. The parabolic approximation method was successfully
applied to model tropospheric radiowave propagation over land in the presence
of range-dependent refractivity (A Terrain Parabolic Equation Model for
Propagation in the Troposphere, n.d.), X-ray diffraction optics(Application of the
Parabolic Wave Equation to X-ray Diffraction Optics, 1999), microwave
waveguides, laser beam propagation, plasma physics, and seismic wave
propagation.The PE (or parabolic approximation) approach replaces the
elliptic-reduced equation with a PE. The PE is derived by assuming that energy
propagates at speeds close to a reference speed—either the shear speed or the
compressional speed, as appropriate. The computational advantage of the
parabolic approximation lies in the fact that a parabolic differential equation can
be marched in the range dimension, whereas the elliptic-reduced wave equation
must be numerically solved in the entire range-depth region simultaneously. At
the time Tappert introduced the PE method to the underwater acoustics
community, there was a critical need for a capability to predict long-range,
low-frequency sound propagation, as would occur in the vicinity of the sound
channel axis. Since this type of propagation is characterized by low-angle,
nonboundary interacting energy, the PE method was ideally suited to this



purpose.In general, PE models propagate the acoustic field only in the forward
direction, thus excluding backscatter. Among all these mentioned models, the PE
model has the advantage of being fast and flexible when solving
range-dependent acoustic propagation problems.(Tu et al., 2020).
Keeping the current scenarios in mind, it has been found that IOR is deep water
and we need to use it for the low frequency sound propagation. So, the best
model type was the Parabolic equation.

Parabolic Equation in detail: Research on underwater acoustic propagation modeling
theory began in the 1960s. Initially, only ray theory and the horizontally layered normal mode
theory existed. Their ability to deal with problems was limited, and they could only calculate
range-independent problems. Numerous contributions have been made in the enhancement of
the Parabolic Equation (PE) approximation method, which has been shown to be a useful tool
for solving realistic problems in many different scientific fields. Evidence of its usefulness is the
application of PE to solve ocean acoustic propagation problems. In the 1970s, Hardin and
Tappert introduced the PE method in the field of underwater acoustics for the first time and
approximated the Helmholtz equation as a two-dimensional equation that was related only to
the range and depth and was independent of the azimuth. In the 1980s, Davis et al. derived a
generalized PE model using the operator method; the derivation based on a series expansion of
the square-root operator Q enables the formulation of better PE approximations with a
wide-angle capability. Greene5 and Claerbout6 selected different coefficients and derived their



respective wide-angle PE models. Accordingly, interest in PE techniques has steadily grown
within the ocean acoustic modeling community. Based on the idea of parabolic approximation,
many parabolic model schemes have been proposed. In scientific computing and numerical
simulations in engineering, the spectral method (SM), FDM and finite element method are the
three major discrete numerical methods.(Tu et al., 2020).

Different types of PE model program:
● RAM (Range Acoustic Model): Collins was the first to implement the

wide-angle PE numerical solution based on the high-order Pad´e
approximation and expanded the propagation angle to nearly 90◦. This
process solved many practical problems, such as the self-starter to obtain
an initial condition, “split-step” high-order Pad´e series approximation,
energy loss problem caused by a step approximation and treatment of an
inclined seafloor boundary. Then, the classic underwater
range-dependent acoustic model (RAM) program was developed, and the
depth operator was discretized using the finite difference method (FDM).
This approach of replacing the depth operator with a tridiagonal matrix
can address piecewise continuous depth variations in acoustic
parameters. After discretizing in the depth direction, the numerical
solution involves repeatedly solving tridiagonal systems of equations.(Tu
et al., 2020).

● CSMPE(Chebyshev–Tau Spectral Method) : The (Spectral Methods)SM
to solve the PE, originates from the method of weighted residuals. It uses
orthogonal polynomials (triangular polynomials, Chebyshev polynomials,
Legendre polynomials) as the basis functions and applies finite-term
series to approximate the variables to be solved. The greatest advantage
of the SM is that it exhibits exponential convergence; i.e. when the
solution of the original equation is sufficiently smooth, the approximate
solution obtained by the SM will quickly converge to the exact solution.the
SM is frequently used in various mathematical and physical problems,
such as computational fluid dynamics, chemical measurements and
electricity.Solving an acoustic wave equation using a parabolic
approximation is a popular approach for many existing ocean acoustic
models. Considering the idea and theory of the wide-angle rational
approximation, a discrete PE model using the Chebyshev spectral
method (CSM) is derived, and the code is developed. Most recently, Tu
et al. implemented a Chebyshev–Tau SM to solve acoustic normal modes
with a stratified marine environment. In applying the SM to solve the PE
model, Tu et al. presented the standard PE model using the Chebyshev
spectral method (CSM) to process a single layer of a body of water with
constant density and no attenuation.This method is currently suitable only
for range-independent waveguides.Compared with the RAM results, the
CSMPE results have higher accuracy in the simple case of constant



sound speed. However, the CSM has a longer runtime than the RAM
despite having fewer discrete points. Thus, the CSMPE is slower than the
RAM. Even considering that the RAM is a well-optimized code, the speed
of the CSMPE is not satisfactory, which is its main disadvantage.(Tu et
al., 2020). The CSM for the discrete PE model is feasible and reliable, the
results are credible, and the CSM has higher accuracy than the classic
PE model (the RAM program based on the FDM) in a range-independent
environment. The disadvantage of the CSM is the large amount of
calculations involved; in the calculation of the CSMPE program, it is
necessary to solve the dense matrix equations multiple times, while the
FDM must solve only the larger-scale tridiagonal matrix algebraic
equations. In addition, the CSMPE program is used only in simple marine
environments above a flat, horizontal ocean floor; that is, variations in the
sound speed profile with range are not considered.

● CCMPE (Chebyshev Collocation Method) : The collocation method is
a kind of spectral method that is based on the principle of weighted
residual minimization. The CCM provides a program for computing the
sound pressure field when the sea surface and bottom are range
independent. This method first interpolates the acquired data of the sound
speed, density and attenuation profiles to the CGL points. After modifying
the depth operator matrix with the boundary conditions, complex matrix
algebraic equations for solving the pressure field are formed that can be
solved by applying numerical libraries and algorithms. In general, CCMPE
uses fewer discrete points to match or exceed the RAM’s accuracy,
especially when the acoustical profiles are smooth like an ideal fluid
waveguide with a constant sound speed profile, an ideal fluid waveguide
with a munk sound speed profile. However, in cases where the sound
speed, density and attenuation profiles are not sufficiently smooth like an
ideal fluid waveguide with a barents sea sound speed profile, an ideal
fluid waveguide with surface duct sound speed profile the CCM should
use more CGL points to obtain convincing results.The calculation speed
of CCMPE is much faster than that of CSMPE but the computational time
is longer than that of the RAM.

Limitations: This work mainly focuses on the three models of solving parabolic equations,
but there are many other models as well. Moreover, these five canonical models mentioned in
the work are the older versions. Recent developments have been made in all these models that
have made significant progress in improving these models. Additionally, this work mainly pays
attention to the rough and smooth sound profiles, limiting the research.

Way forward: Keeping the limitations in mind, detailed research can be done on the five
mentioned above models with their developed versions so as to incorporate the new updates.



Additionally, there can be a further study comprising all the different models of solving the
parabolic equations.

Conclusion: The vast ocean holds significant potential in terms of energy, minerals, and
biological resources. However, effectively harnessing these resources requires advancements in
marine research and development. One of the key challenges in this domain involves detecting,
identifying, positioning, and communicating with underwater targets. Currently, sound waves
serve as the primary method for transmitting information underwater. Therefore,
comprehensively studying and comprehending the principles governing the propagation of
sound in water is of immense practical importance. Several computational models are
commonly employed to understand underwater acoustic propagation. These models include the
parabolic equation (PE) model, normal modes, the wavenumber integration method, and the ray
model. Each of these approaches provides a unique perspective on the behavior of sound
waves in water and enables researchers to tackle different aspects of underwater acoustics.
The parabolic equation model, for instance, is a widely utilized computational technique that
approximates the behavior of sound waves by solving a simplified version of the wave equation.
Normal modes, on the other hand, describe the natural oscillations of sound in an ocean
waveguide and aid in analyzing the transmission of sound over long distances. The
wavenumber integration method involves integrating the contributions of various wave
components to determine the overall sound field. Lastly, the ray model simplifies the acoustic
propagation process by approximating sound waves as rays that travel in straight lines, thereby
facilitating quick estimations of sound paths and arrival times. By employing these
computational models, scientists and researchers can gain valuable insights into underwater
acoustics, which in turn can inform the development of efficient systems for underwater
communication, target detection, and resource exploration. Understanding the intricacies of
sound propagation in water opens up new avenues for sustainable and responsible utilization of
the ocean's vast resources.
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